29.07.16

LIFESPAN: Longitudinal Study Designer

LIFESPAN: Longitudinal Study Designer

Documentation

Var ₁ = 100.0 Cov/s	= 2.0 Var ₅ = 5 Sispe 2.0 X2	.0)) x3	
$Var_{E} = 80.0$ $Var_{E} = 8$ Reliability Meas Specification Pr	0.0 $Var_E = 80.0 Va$ sures: GCR(0) = 0.56	r _E = 80.0 5; GRR = 0.24; EGCR = 0.29; Plot Iso-Power Monte Ca	arlo
Var _E = 80.0 Var _E = 8 Reliability Meas Specification Pr Parameter Name	0.0 $Var_{e} = 80.0 Va$ sures: GCR(0) = 0.56 ower Equivalence Value	r _E = 80.0 5; GRR = 0.24; EGCR = 0.29; Plot Iso-Power Monte Ca Estimated	arlo
Var _E = 80.0 Var _E = 8 Reliability Meas Specification Pr Parameter Name Variance of intercept	$Value$ $100.0 Var_{E} = 80.0 Var_{$	r _E = 80.0 5; GRR = 0.24; EGCR = 0.29; Plot Iso-Power Monte Ca Estimated	arlo
Var _E = 80.0 Var _E = 8 Reliability Meas Specification Pr Parameter Name Variance of intercept Variance of slope	0.0 $Var_{e} = 80.0$ Va sures: GCR(0) = 0.50 ower Equivalence Value 100.0 5.0	$r_{e} = 80.0$ 5; GRR = 0.24; EGCR = 0.29; Plot Iso-Power Monte Ca Estimated \checkmark	arlo
Var _E = 80.0 Var _E = 8 Reliability Meas Specification P Parameter Name Variance of intercept Variance of slope Residual variance	0.0 $Var_{e} = 80.0 Va$ sures: GCR(0) = 0.50 ower Equivalence Value 100.0 5.0 80.0	$r_{e} = 80.0$ 5; GRR = 0.24; EGCR = 0.29; Plot Iso-Power Monte Ca Estimated \checkmark \checkmark	irlo
Var _E = 80.0 Var _E = 8 Reliability Meas Specification P Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions	0.0 Var _e = 80.0 Va sures: CCR(0) = 0.50 ower Equivalence Value 100.0 5.0 80.0 4.0	$r_{E} = 80.0$ 5; GRR = 0.24; ECCR = 0.29; Plot Iso-Power Monte Ca Estimated \checkmark	arlo
Var _E = 80.0 Var _E = 8 Reliability Meas Specification P Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions Time span	0.0 Var _e = 80.0 Va sures: CCR(0) = 0.51 value 100.0 5.0 80.0 4.0 3.0	r _E = 80.0 5; GRR = 0.24; EGCR = 0.29; Plot Iso-Power Monte Ca Estimated ✓ ✓	rlo
Var _E = 80.0 Var _E = 8 Reliability Meas Specification Pr Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions Time span Latent Covariance	0.0 Var _e = 80.0 Va sures: CCR(0) = 0.50 Value 100.0 5.0 80.0 4.0 3.0 2.0	r _E = 80.0 5; GRR = 0.24; EGCR = 0.29; Plot Iso-Power Monte Ca Estimated ✓ ✓ ✓	arto

simulate statistical power.

Introduction

The Longitudinal (Interactive Front-End) Study Designer (LIFESPAN) enables researchers to sketch a longitudinal study as a SEM and examine power and/or reliability measures for hypotheses about change. Currently, LIFESPAN is limited to latent growth curve models and hypotheses about the variance of change as described by Hertzog et al. (submitted). In future versions, we plan to add indicators and simulation tools for other hypotheses and other research designs.

LIFESPAN offers means to specify a linear latent growth curve model, display the corresponding diagram, derive reliability measures of slope effects (GRR, GCR, and EGCR), to derive alternative study designs with equal reliability as measured by EGCR, to graphically examine trade-offs between parameters while holding EGCR constant and Monte-Carlo-

Main Screen

The default screen of LIFESPAN shows three main elements. The top half of the screen contains a diagram representing the current study design. The center shows a summary bar with a set of effect size measures for slope variance:

- Growth Rate Reliability (GRR)
- Growth Curve Reliability (GCR)
- Effective Growth Curve Reliability (EGCR)

1•

• Effective Error (EFF)

The bottom half contains a control panel with four tabs. Each tab contains a different mode of LIFESPAN. In the following, a separate section is dedicated to each mode of LIFESPAN.

Model Specification

In specification mode, you are able to change model parameters of the study design. LIFESPAN is currently limited to study designs of repeated measures of a single variable modeled as a linear latent growth curve model. That is, both intercept and change are represented as a random effects over persons. Parameters subject to change are the variance of latent intercept, the variance of latent slope, the covariance between latent intercept and slope, the residual variance fixed over measurement occasions, the number of measurement occasions, the total time span of the study. Values of these parameters can be changed by entering a number in the respective text field in the center column. Changes are not reflected in the model until button "Done" is pressed. By default, LIFESPAN assumes that four parameters are freely estimated in the model: variance of intercept, variance of slope, residual variance, and latent covariance. If any of these parameters is assumed to be known and fixed, this can by indicated in the third column titled "Estimated". Since LIFESPAN is concerned with hypotheses about the variance of change, the parameter "variance of slope" must always be freely estimated and is thus always shown but greyed out.

As soon as all changes are made, and button "Done" is pressed, changes are reflected in the diagram and in the reliability measures.

EGCR Equivalent Designs

LIFESPAN allows the derivation of EGCR-equivalent designs, i.e., alternative designs with the same EGCR as the initial design. That is, we can ask questions like: "How much does the residual error change if I increase the total time span by 5 units while holding EGCR constant?".

Monte Carlo Power Simulation

LIFESPAN allows to estimate power of a 2-df test of zero slope and zero covariance. To this end, LIFESPAN simulates data under the specified model and estimates parameter under the specified model and a restricted version, in which slope and covariance are fixed at value 0.0. The ratio of statistical significant LR tests between the two models is an estimate of power to reject a false null hypothesis. The number of Monte Carlo trials can be specified by adjusting the number "Replications". The hypothetical sample size for the test is specified by adjusting the number "Sample Size". Before the simulation is started, statistical power is marked as undefined "Undef". The Monte Carlo simulation is started by pressing the "Run" button and can be aborted by hitting "Stop". While the simulation is running, the current simulation trial is shown in the power display as an indicator of the simulation progress.

Latent G	Power Equ rowth Curve Model – H	ivalence GUI ypothesis about the slope variance
$Var_{I} = 100.0$ loopt xo $Var_{E} = 80.0$	$ \begin{array}{c} \text{Cov}_{15} = 2.0 \\ \text{Var}_{15} = 2.0 \\ \text{Var}_{2.0} \\ V$	s = 5.0 Slope 3.0 x_3 0 $Var_E = 80.0$
Reliabi	lity Measures: GCR(0) =	0.56; GRR = 0.24; EGCR = 0.29;
Monte Carlo Sim slope and zero la	ulation to determine po atent covariance.	wer to reject a null hypothesis of zero
Replications		µ.000 €
Sample Size		100 🤤
		Undef
Power		

Plot ISO-EGCR Curves

While the "Equivalence" mode allows to trade parameters against each other using sliders, the "Plot" mode allows to generate curves of these parameter trade-offs. Users can choose two parameters for which an ISO-EGCR curve is plotted, i.e., all points on the curve correspond to model parameterization which generate the same EGCR.

	Latent Growth Cu	Power Ed Irve Model – H	quivalence GUI Typothesis about the s	lope variance
	$cov_{1s} = 2$	$var_s = soperators var_e = 80.0$	5.0 3.0 X3 Var _E = 80.0	
	Reliability Meas	ures: GCR(0)	= 0.56; GRR = 0.24; EG	CR = 0.28;
	Reliability Meas	ures: GCR(0) GCR Equivale	= 0.56; GRR = 0.24; EG nce Plot Iso-EGCR	CR = 0.28; Monte Carlo
This dialo An ISO-p a design p a curve is thus tradi	Reliability Meas Specification E g allows the genera ower plot is a two-o arameter of the stu plotted, of which e ng off the two para	GCR Equivale tion of an ISC dimensional li dy. In this tw ach point rep meters for eau	= 0.56; GRR = 0.24; EC nce Plot Iso-EGCR D-power plot. ne plot, in which each o-dimensional space, resents a model with ech other while holding	CR = 0.28; Monte Carlo dimension represents qual power, power constant.
This dialo An ISO-po a design p a curve is thus tradi Parameter	Reliability Meas Specification E g allows the genera wer plot is a two- warameter of the stu plotted, of which e ng off the two para on X axis	GCR Equivale GCR Equivale tition of an ISC dimensional li Idy. In this tw ach point rep meters for ead	= 0.56; GRR = 0.24; EG nce Plot Iso-EGCR D-power plot. ne plot, in which each ro-dimensional space, resents a model with e ch other while holding Variance of interc	CR = 0.28; Monte Carlo dimension represents qual power, power constant. ept ‡
This dialo An ISO-pr a design p a curve is thus tradi Parameter Parameter	Reliability Meas Specification E g allows the genera over plot is a two-c arameter of the stu plotted, of which e ng off the two para on X axis on Y axis	GCR Equivale GCR Equivale tion of an ISC dimensional li ddy. In this tw ach point rep meters for ead	= 0.56; GRR = 0.24; EG nce Plot Iso-EGCR D-power plot. ne plot, in which each o-dimensional space, resents a model with ec to other while holding Variance of interco Residual variance	CR = 0.28; Monte Carlo dimension represents qual power, power constant. ept ‡
This dialo An ISO-pr a design j a curve is thus tradi Parameter Parameter X Range m	Reliability Meas Specification E g allows the genera over plot is a two-o narameter of the stu- plotted, of which e ng off the two para on X axis on Y axis inimum	ures: GCR(0) GCR Equivale ation of an ISC dimensional li dy. In this tw ach point rep meters for ead	= 0.56; GRR = 0.24; EG nce Plot Iso-EGCR D-power plot. ne plot, in which each o-dimensional space, resents a model with e ch other while holding Variance of interco Residual variance 1	CR = 0.28; Monte Carlo dimension represents qual power, power constant. ept ‡
This dialo An ISO-pr a design r a curve is thus tradi Parameter Parameter X Range m X Range m	Reliability Meas Specification E g allows the genera ower plot is a two-c parameter of the stu plotted, of which e ng off the two para on X axis on Y axis inimum aximum	GCR Equivale GCR Equivale tion of an ISC dimensional li Idy. In this tw ach point rep meters for eau	= 0.56; GRR = 0.24; EG nce Plot Iso-EGCR D-power plot. ne plot, in which each ro-dimensional space, resents a model with ech other while holding Variance of intero Residual variance 1 100	CR = 0.28; Monte Carlo dimension represents qual power, power constant. ept ‡
This dialo An ISO-pi a design r a curve is thus tradi Parameter Parameter X Range m X Range m	Reliability Meas Specification E g allows the genera ower plot is a two-o parameter of the stu- ng off the two para on X axis on Y axis inimum aximum Plot	ures: GCR(0) GCR Equivale ation of an ISC dimensional li dy. In this tw ach point read meters for ead	= 0.56; GRR = 0.24; EG nce Plot Iso-EGCR D-power plot. ne plot, in which each o-dimensional space, resents a model with e ch other while holding Variance of interce Residual variance 1 100	CR = 0.28; Monte Carlo dimension represents qual power, power constant. ept ÷

Example I: Determine Power of a Study Design

Here, we estimate statistical power of a model. The baseline model has four observations at time points 0,0.1,0.2,0.3, a slope variance of 50, residual error variance of 20, a sample size of 100. For a intercept variance of 50 and a intercept-slope-covariance of 23. Statistical power is at .4. We first switch to the model specification tab and enter these values:

As can be seen from the summary bar in the center of the screen, GRR is .11 and EGCR is .12. We switch to the Monte Carlo tab and simulate power for this condition with a 2df test. Enter the desired number of replications (1000), sample size (100), and select the 2df test, then push button "Run".

O O Power E Latent Growth Curve Model -	quivalence GUI Hypothesis about the slope variance
$Var_{I} = 50.0$ $Var_{I} = 50.0$ $Var_{I} = 20.0$ $Var_{I} = 20.0$	x_{3} y_{2} y_{2} y_{3} y_{3} y_{4} x_{1} y_{2} y_{2} y_{2} y_{3} y_{4} y_{2} y_{2} y_{3}
Reliability Measures: GCR(0)) = 0.71; GRR = 0.11; EGCR = 0.13;
Specification EGCR Equival	ence Plot Iso-EGCR Monte Carlo
Monte Carlo Simulation to determine pow zero latent covariance.	ver to reject a null hypothesis of zero slope and
Replications	1.000 🗘
Sample Size	100
Test type:	◯ 1df ● 2df
Power	0.41 (Std. err. 0.016)
Run	Stop

In 405 out of 1000 trials, the LR statistic was significant, i.e., power was estimated to be 41% with a standard error of about 1%.

Example II: Does Intercept Variance Matter for Power?

We specify a baseline model as follows. Variance of intercept is 100, variance of slope is 5, residual variance is 80, number of occasions is 4, time span is 3, latent covariance is 1.

 	-	_	-
	-	_	_

Latent Count	Curve Medel Librat	hasis about the slape verifier of	100000000000
Latent Growth	1 Curve Model – Hypot	hesis about the slope variance	
Var ₁ = 100.0	$Var_{s} = 5.0$ Slope 2.0 3.0 X2 X2 X 0.0 Var _e = 80.0 Var _e	3 3 80.0	
_E - 00.0 val _E - 00			
Reliability M	leasures: GCR(0) = 0.5 EGCR Equivalence	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo	
Reliability N Specification Parameter Name	leasures: GCR(0) = 0.5 EGCR Equivalence Value	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept	leasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability M Specification Parameter Name Variance of intercept Variance of slope	leasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability M Specification Parameter Name Variance of intercept Variance of slope Residual variance	leasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated V V	
Reliability N Specification Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions	leasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0 4.0	6; GRR = 0.24; ECCR = 0.28; Plot Iso-ECCR Monte Carlo Estimated V V V	
Reliability M Specification Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions Time span	leasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0 4.0 3.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions Time span Latent Covariance	leasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0 4.0 3.0 1	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions Time span Latent Covariance Done	leasures: GCR(0) = 0.5 ECCR Equivalence Value 100.0 5.0 80.0 4.0 3.0 1	6; GRR = 0.24; EGCR = 0.28; Plot Iso-ECCR Monte Carlo Estimated C	

GRR for this model is .24 and EGCR is .28.

We switch to "Monte Carlo" mode and simulate with 5000 replications the power for a 2df test. The power to reject the null hypothesis of no variance in change with the 2df is estimated as 0.49 (and, of course, this value will be slightly different for you as it will be based on a different Monte Carlo sample).

Switch back to "specification" tab, and change the variance of intercept to 1.0 and press "Done" button. While GRR stays at .24, EGCR goes up to .43 implying a higher reliability. Back in "Monte Carlo" panel, let's repeat the simulation. Power to reject the null hypothesis is .89 for the 2df test.

$\Theta \Theta \Theta$	Power Equivalence GUI	
	Latent Growth Curve Model - Hypothesis about the slope variance	
	$= 1.0$ $Var_{s} = 5.0$ $yar_{t} = 80.0$ $Var_{t} = 80.0$	
	Poliability Measures: $CCP(0) = 0.01$; $CPP = 0.24$; $ECCP = 0.42$;	
	Specification ECCP Equivalence Plot Ico ECCP Monte Carle	
Monte Ca zero later	rlo Simulation to determine power to reject a null hypothesis of zero slope and it covariance.	
Replicatio	ns (5.000	•
Sample Siz	ze 100	•
Test type:	◯ 1df ● 2df	
Power	0.8942 (Std. err. 0.0040)	
	Run Stop	

Example III: Plot an ISO-EGCR curve

We start by specifying a baseline model. Switch to "specification" mode and enter the values as shown in the following screen shot:

-	-

Latent Growt	h Curve Model - Hypot	hesis about the slope variance	
Var _i = 100.0 Var _i = 100.0	= 2.0 Var _s = 5.0 Slope 2.0 3.0 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2 X2	3 80.0	
Reliability N	Neasures: GCR(0) = 0.5	6; GRR = 0.24; EGCR = 0.28;	
Reliability N Specification	Aeasures: GCR(0) = 0.5 EGCR Equivalence	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo	
Reliability N Specification Parameter Name	Aeasures: GCR(0) = 0.5 EGCR Equivalence Value	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept	Aeasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept Variance of slope	Measures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept Variance of slope Residual variance	Measures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated V	
Reliability N Specification Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions	Measures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0 4.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions Time span	Measures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0 4.0 3.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions Time span Latent Covariance	Aeasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0 4.0 3.0 2.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	
Reliability N Specification Parameter Name Variance of intercept Variance of slope Residual variance No. Occasions Time span Latent Covariance Done	Aeasures: GCR(0) = 0.5 EGCR Equivalence Value 100.0 5.0 80.0 4.0 3.0 2.0	6; GRR = 0.24; EGCR = 0.28; Plot Iso-EGCR Monte Carlo Estimated	

In the following, we create a curve that illustrates the trade-off between variance of intercept and residual variance for constant EGCRs. Switch to "Plot ISO-EGCR" mode and choose variance of intercept as x-axis parameter, residual variance as y-axis parameter and adjust the x-axis range from 1 to 100 as in the following screen shot. Then press button "Plot".

-	-	

	Power Equi	valence GUI
Var ₁ =	Latent Growth Curve Model – Hy 100.0 Var _s = 2.0 Var _s = 5 Slope 2.0 Var _s = 5 2.0 Var _s = 5 2.0 Var _s = 5 2.0 Var _s = 5 Slope 2.0 Var _s = 5 3.0 Var _s = 80.0 Var _s	pothesis about the slope variance 0 10 $r_{E} = 80.0$
	Reliability Measures: GCR(0) = Specification EGCR Equivalence	0.56; GRR = 0.24; EGCR = 0.28; e Plot Iso-EGCR Monte Carlo
This dialo An ISO-p a design j a curve is thus tradi Parameter	Reliability Measures: GCR(0) = Specification EGCR Equivalence og allows the generation of an ISO- ower plot is a two-dimensional line parameter of the study. In this two- plotted, of which each point repre- ing off the two parameters for each on X axis	0.56; GRR = 0.24; EGCR = 0.28; e Plot Iso-EGCR Monte Carlo bower plot. plot, in which each dimension represents dimensional space, ents a model with equal power, other while holding power constant. Variance of intercept \$
This dialc An ISO-p a design a curve is thus tradi Parameter Parameter	Reliability Measures: GCR(0) = Specification EGCR Equivalence g allows the generation of an ISO- ower plot is a two-dimensional line parameter of the study. In this two- plotted, of which each point repres- ing off the two parameters for each on X axis on Y axis	0.56; GRR = 0.24; ECCR = 0.28; e Plot Iso-EGCR Monte Carlo bower plot. plot, in which each dimension represents dimensional space, tents a model with equal power, other while holding power constant. Variance of intercept Residual variance \$
This dialc An ISO-p a design a curve is thus tradi Parameter Parameter X Range m	Reliability Measures: GCR(0) = Specification EGCR Equivalence og allows the generation of an ISO power plot is a two-dimensional line parameter of the study. In this two- plotted, of which each point repres- ng off the two parameters for each on X axis on Y axis inimum	0.56; GRR = 0.24; EGCR = 0.28; e Plot Iso-EGCR Monte Carlo power plot. plot, in which each dimension represents dimensional space, enerts a model with equal power, other while holding power constant. Variance of intercept \$ Residual variance \$ 1
This dialc An ISO-p a design J a curve is thus tradi Parameter Parameter X Range m X Range m	Reliability Measures: GCR(0) = Specification EGCR Equivalence org allows the generation of an ISO- ower plot is a two-dimensional line parameter of the study. In this two- plotted, of which each point repres- ing off the two parameters for each on X axis on Y axis inimum maximum	0.56; GRR = 0.24; EGCR = 0.28; e Plot Iso-EGCR Monte Carlo power plot. plot, in which each dimension represents dimensional space, sents a model with equal power, other while holding power constant. Variance of intercept Residual variance 1 100

The resulting plot shows points for intercept variance and residual variance with equal EGCR.

Contact

LIFESPAN was designed by Andreas M. Brandmaier (<u>brandmaier@mpib-berlin.mpg.de</u>), Christopher Hertzog, Timo von Oertzen, Ulman Lindenberger, and Paolo Ghisletta.